Rufiani Nadzirah
Jurusan Teknik Pertanian, Fakultas Teknologi Pertanian, Universitas Jember, Indonesia
Yoga Rezky Saputra
Jurusan Teknik Pertanian, Fakultas Teknologi Pertanian, Universitas Jember, Indonesia
Indarto
Jurusan Teknik Pertanian, Fakultas Teknologi Pertanian, Universitas Jember, Indonesia
DOI: https://doi.org/10.19184/j-agt.v16i02.28567
ABSTRACT
Nowadays, vegetation classification can be used to find out the latest information about the characteristics and distribution of vegetation in an area. However, a conservative process to differentiate vegetation was ineffective. Some of those limitations are poor accessibility that does work less safety, time-consuming, and needs a lot of human resources. On the other hand, remote sensing offers solutions that cannot be done by the simple method, such as how to take the data, time-consuming are less, and human resource needs are less as well. The purpose of this study was to classify, measured the area of each vegetation, and compared the effectiveness of the unsupervised used K-Means algorithm and supervised used Object Base Image Analysis algorithm methods vegetation classification. For accuracy calculation with confusion matrix, the classification results of the two methods were compared with the manual digitization method. Data was taken using drones in the area of the Curah Manis Sempolan Nature Reserve 1. Classification of vegetation consists of 5 vegetation types, which was apak, bush, pine, bendo, and dadap. The total area of the study area was 1.633 ha, and area vegetation of each classification was apak 0.224 ha; bush 0.748 ha; pine 0.394 ha; bendo 0.222 ha; and dadap 0.045 ha. The results of the calculation of accuracy showed that the unsupervised method had a value for overall accuracy of 80% and kappa accuracy of 73.58%. Then, in the supervised for overall accuracy is 68% and kappa accuracy of 58.72%.
Keywords: classification, drone, remote sensing, satellite
REFERENCES
Adam, E., Mutanga, O., & Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecology and Management, 18(3), 281–296. https://doi.org/10.1007/s11273-009-9169-z
Alimudi, S., Susilo, S.B., & Panjaitan, J.P. (2017). Deteksi perubahan luasan mangrove menggunakan citra landsat berdasarkan metode OBIA di Teluk Valentine Pulau Buano. Jurnal Teknologi Perikanan dan Kelautan, 8(2), 139–146. https://doi.org/10.29244/jitkt.v13i1.27886
Balai Besar Konservasi Sumber Daya Alam Jawa Timur. (2015). Balai Besar Konservasi Sumber Daya Alam Jawa Timur. Humas BBKSD Jawa Timur. (https://bbksdajatim.org/) [Diakses tanggal 5 Juli 2022].
Costa, H., Foody, G.M., & Boyd, D.S. (2018). Supervised methods of image segmentation accuracy assessment in land cover mapping. Remote Sensing of Environment, 205, 338–351. https://doi.org/10.1016/j.rse.2017.11.024
Danoesoebroto, A. (2010). Klasifikasi Citra/Lahan-Klasifikasi Terbimbing dan Tak Terbimbing. Bandung: Institut Teknologi Bandung.
De Castro, A.I., Torres-Sánchez, J., Peña, J.M., Jiménez-Brenes, F.M., Csillik, O., & López-Granados, F. (2018). An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sensing, 10(2), 285. https://doi.org/10.3390/rs10020285
Dronova, I. (2015). Object-based image analysis in wetland research: A review. Remote Sensing, 7(5), 6380–6413. https://doi.org/10.3390/rs70506380
Ediyanto, Mara, M.N, & Satyahadewi, N. (2013). Pengklasifikasian karakteristik dengan metode K-Means cluster analysis. Bimaster, 2(02), 133–136. http://dx.doi.org/10.26418/bbimst.v2i02.3033
Guo, Z., Wang, T., Liu, S., Kang, W., Chen, X., Feng, K., Zhang, X., & Zhi, Y. (2021). Biomass and vegetation coverage survey in the Mu Us sandy land-based on unmanned aerial vehicle RGB images. International Journal of Applied Earth Observation and Geoinformation, 94, 102239. https://doi.org/10.1016/j.jag.2020.102239
Hossain, M.D., & Chen, D. (2019). Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 115–134.
https://doi.org/10.1016/j.isprsjprs.2019.02.009
Indarto, I. (2014). Teori dan Praktek Penginderaan Jauh (ISBN: 978--979--29-4224-8). Yogyakarta: Penerbit Andi.
Indarto, I. (2017). Penginderaan Jauh: Metode Analisis & Interpretasi Citra. Yogyakarta: Penerbit Andi.
Jaya, I.N.S., & Surati, N. (2010). Analisis citra digital: Perspektif penginderaan jauh untuk pengelolaan Sumber Daya Alam. Fakultas Kehutanan. Bogor (ID): Institut Pertanian Bogor.
Jenness, J., & Wynne, J.J. (2005). Cohen’s Kappa and classification table metrics 2.0: An ArcView 3. x extension for accuracy assessment of spatially explicit models. Open-File Report OF 2005-1363. Flagstaff, AZ: US Geological Survey, Southwest Biological Science Center. 86 p.
Kristianingsih, L., Wijaya, A.P., & Sukmono, A. (2016). Analisis pengaruh koreksi atmosfer terhadap estimasi kandungan klorofil-a menggunakan Citra Landsat 8. Jurnal Geodesi Undip, 5(4), 56–64.
Kurniawati, E., Wibowo, Y., & Suryaningrat, I.B. (2019). Analisis penentuan lokasi pengembangan klaster industri berbasis singkong di Kabupaten Jember. Jurnal Agroteknologi, 13(02), 98–107. https://doi.org/10.19184/j-agt.v13i02.9552
Lang, S. (2008). Object-based image analysis for remote sensing applications: modeling reality–dealing with complexity. In Object-based image analysis (pp. 3–27). Springer.
Li, M., Ma, L., Blaschke, T., Cheng, L., & Tiede, D. (2016). A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. International Journal of Applied Earth Observation and Geoinformation, 49, 87–98. http://dx.doi.org/10.1016/j.jag.2016.01.011
Lillesand, T., Kiefer, R.W., & Chipman, J. (2015). Remote sensing and image interpretation. United States: John Wiley & Sons.
López-Granados, F., Torres-Sánchez, J., De Castro, A.I., Serrano-Pérez, A., Mesas-Carrascosa, F.J., & Peña, J.M. (2016). Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery. Agronomy for Sustainable Development, 36(4), 67. DOI: 10.1007/s13593-016-0405-7
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., & Motagh, M. (2017). Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 13–31. https://doi.org/10.1016/j.isprsjprs.2017.05.010
Maksum, Z.U., Prasetyo, Y., & Haniah, H. (2016). Perbandingan klasifikasi tutupan lahan menggunakan metode klasifikasi berbasis objek dan klasifikasi berbasis piksel pada citra resolusi tinggi dan menengah. Jurnal Geodesi Undip, 5(2), 97–107.
Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15. https://doi.org/10.1007/s12518-013-0120-x
Peña, J.M., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A.I., & López-Granados, F. (2015). Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors, 15(3), 5609–5626. https://doi.org/10.3390/s150305609
Putra, B.T.W., Soni, P., Marhaenanto, B., Harsono, S.S., & Fountas, S. (2019). Using information from images for plantation monitoring: A review of solutions for smallholders. Information Processing in Agriculture, 7(1), 109–119. https://doi.org/10.1016/j.inpa.2019.04.005
Tian, K., Li, J., Zeng, J., Evans, A., & Zhang, L. (2019). Segmentation of tomato leaf images based on adaptive clustering number of K-Means algorithm. Computers and Electronics in Agriculture, 165, 104962. https://doi.org/10.1016/j.compag.2019.104962
US Geological Survey. (2015). Landsat 8 (L8) data users handbook. Sioux Falls, South Dakota.
Wicaksono, I., & Farda, N.M. (2016). Pemetaan famili mangrove menggunakan metode object base image analysis (OBIA) pada Citra Worldview-2 di Balai Taman Nasional Karimunjawa. Jurnal Bumi Indonesia, 5(1), 1–10.
Yang, M.S., & Sinaga, K.P. (2019). A feature-reduction multi-view K-means clustering algorithm. IEEE Access, 7, 114472–114486. DOI: 10.1109/ACCESS.2019.2934179
Zhu, E., Zhang, Y., Wen, P., & Liu, F. (2019). Fast and stable clustering analysis based on Grid-mapping K-Means algorithm and new clustering validity index. Neurocomputing, 363, 149–170. DOI: 10.1016/j.neucom.2019.07.048